Sunday 15 July 2012

Twin Prime Proof Appendix


Here’s a bit more detail on how the first hypercuboid was constructed – this is the simple version before we added the complication of residues of squares. This is a version that is looking for pn and pn+2 numbers (eg twin primes) starting from the point where we have narrowed the possible numbers down to the 2n+1 planes and the 3n+1 planes:


1
7
13
19
25
31
37
43
49
55
61
67
73
79
85
91
97
103
109
115
121
127
133
139
145
151
157
163
169
175
181
187
193
199
205

Numbers coloured grey are either 5N or 5N +2.
Numbers coloured blue are either 7N or 7N+2.

We turn this into a box by adding the following five slices starting from each of the five columns:


1
31
61
91
121
151
181
211
241
271
301
331
361
391
421
451
481
511
541
571
601
631
661
691
721
751
781
811
841
871
901
931
961
991
1021
1051
1081
1111
1141
1171
1201
1231
1261
1291
1321
1351
1381
1411
1441
1471
1501
1531
1561
1591
1621
1651
1681
1711
1741
1771
1801
1831
1861
1891
1921
1951
1981
2011
2041
2071
2101
2131
2161
2191
2221
2251
2281

7
37
67
97
127
157
187
217
247
277
307
337
367
397
427
457
487
517
547
577
607
637
667
697
727
757
787
817
847
877
907
937
967
997
1027
1057
1087
1117
1147
1177
1207
1237
1267
1297
1327
1357
1387
1417
1447
1477
1507
1537
1567
1597
1627
1657
1687
1717
1747
1777
1807
1837
1867
1897
1927
1957
1987
2017
2047
2077
2107
2137
2167
2197
2227
2257
2287

13
43
73
103
133
163
193
223
253
283
313
343
373
403
433
463
493
523
553
583
613
643
673
703
733
763
793
823
853
883
913
943
973
1003
1033
1063
1093
1123
1153
1183
1213
1243
1273
1303
1333
1363
1393
1423
1453
1483
1513
1543
1573
1603
1633
1663
1693
1723
1753
1783
1813
1843
1873
1903
1933
1963
1993
2023
2053
2083
2113
2143
2173
2203
2233
2263
2293

19
49
79
109
139
169
199
229
259
289
319
349
379
409
439
469
499
529
559
589
619
649
679
709
739
769
799
829
859
889
919
949
979
1009
1039
1069
1099
1129
1159
1189
1219
1249
1279
1309
1339
1369
1399
1429
1459
1489
1519
1549
1579
1609
1639
1669
1699
1729
1759
1789
1819
1849
1879
1909
1939
1969
1999
2029
2059
2089
2119
2149
2179
2209
2239
2269
2299

25
55
85
115
145
175
205
235
265
295
325
355
385
415
445
475
505
535
565
595
625
655
685
715
745
775
805
835
865
895
925
955
985
1015
1045
1075
1105
1135
1165
1195
1225
1255
1285
1315
1345
1375
1405
1435
1465
1495
1525
1555
1585
1615
1645
1675
1705
1735
1765
1795
1825
1855
1885
1915
1945
1975
2005
2035
2065
2095
2125
2155
2185
2215
2245
2275
2305

And as before, note that we can rearrange these to make the planes clearer, for instance:









5n+1
5n+2
5n+3
5n+4
5n+5
7n+1
1
127
43
169
85
7n+2
121
37
163
79
205
7n+3
31
157
73
199
115
7n+4
151
67
193
109
25
7n+5
61
187
103
19
145
7n+6
181
97
13
139
55
7n+7
91
7
133
49
175


7n+1
7n+2
7n+3
7n+4
7n+5
7n+6
7n+7
11n+1
1
331
661
991
1321
1651
1981
11n+2
211
541
871
1201
1531
1861
2191
11n+3
421
751
1081
1411
1741
2071
91
11n+4
631
961
1291
1621
1951
2281
301
11n+5
841
1171
1501
1831
2161
181
511
11n+6
1051
1381
1711
2041
61
391
721
11n+7
1261
1591
1921
2251
271
601
931
11n+8
1471
1701
2131
151
481
811
1141
11n+9
1681
2011
31
361
691
1021
1351
11n+10
1891
2211
241
571
901
1231
1561
11n+11
2101
121
451
781
1111
1441
1771


7n+1
7n+2
7n+3
7n+4
7n+5
7n+6
7n+7
11n+1
463
793
1123
1453
1783
2113
133
11n+2
673
1003
1333
1663
1993
13
343
11n+3
883
1213
1543
1873
2203
223
553
11n+4
1093
1423
1753
2083
103
433
763
11n+5
1303
1633
1963
2293
313
643
973
11n+6
1513
1843
2173
193
523
853
1183
11n+7
1723
2053
73
403
733
1063
1393
11n+8
1933
2263
283
613
943
1273
1603
11n+9
2143
163
493
823
1153
1483
1813
11n+10
43
373
703
1033
1363
1693
2023
11n+11
253
583
913
1243
1573
1903
2233

For the proof above, these diagrams would need to be extended to 25n x 49n grids and 49n x 121n grids, but it is easier just to imagine those…

Appendix B

Just a quick thought on modulo residues:


I find it easiest to think of modulo residues this way – any prime number p has a modulo residue of p for every other prime. For instance, 19 is defined by the infinite set of pn + 19 residues. However, for numbers below 19, you need to convert this into numbers in the appropriate modulo range, so this is equivalent to 2n+1, 3n+1, 5n+4, 7n+5, 11n+8, 13n+6, 17n+2, 19n (or 19n+19) and every pn+19 thereafter. 

Appendix C

Some people might not like the "merging" stage of the attempted proof. (it's certainly a bit dodgy as things stand!) An alternative method would be to simply remove the pn+2 planes from the grid at the same time as repeating other green planes. This would leave us with an incomplete number chain, with repetitions. It would still be topologically equivalent to the prime number hypercuboid. And when it comes to the p^2n+p and p^2n+p+2 planes, we could simply ignore one of them since both will contain the same numbers (>3) in locations where they are not intersected by black planes.

(See also this page for an attempt to simplify the patterns of coloured planes)

Appendix D

Sometimes in the proof there may be some confusion between planes and hyperplanes - I've not been too pedantic about this because the only truly important thing about the multi-dimensional geometry of the hypercuboid is that each number lies on the intersection of an infinite number of planes and that an (admissible) infinite range of modulo residues uniquely defines any number.

No comments:

Post a Comment